# ALM - Risk Measurement

Tiago Fardilha and Walther Neuhaus

#### **Course Program**

- Basic interest rate theory
- Interest rate risk management
- Stochastic term structure models
- Risk measurement
- Reinsurance and insurance-linked securities
- Mean-variance analysis for ALM

#### Contents of the chapter

- VaR and TailVaR.
- Simulation of stochastic evolution of the yield curve.
- Coherent risk measures
- Spectral risk measures
- Solvency II and the 200 year event

#### Risk measures

There are two main forms of risk measurement in ALM.

- Analysis of sensitivity to changes in financial variables:
  - Duration
  - Convexity
- Modeling a probability distribution and simulation:
  - Value at Risk (VaR)
  - Tail Value at Risk (TailVar)
  - Coherent risk measures
  - Spectral risk measures

#### Definition of a loss

- A random variable X is a loss if
  - X > 0 denotes a loss
  - X < 0 denotes a profit.
- ullet The probability distribution F of X is a loss distribution. In most applications
  - LossX = Actual Cost Expected Cost, or
  - Loss X =Expected Income Actual Income

## Value at Risk (VaR)

• For a loss distribution F, VaR at confidence level  $\alpha$  is defined as the  $\alpha$ -percentile:

$$\operatorname{VaR}_{\alpha}(F) = F^{-1}(\alpha)$$

- VaR is the loss level that will not be exceeded with a given probability. For example,  $\alpha$  could be 0.90, 0.095, 0.99, 0.995.
- Var involves two arbitrary parameters:
  - ullet the confidence level lpha
  - the holding period (day, month, or until final run-off)

#### Value at Risk (VaR) - Observations

- Started by JP Morgan for one-day measurements RiskMetrics https://www.msci.com/
   documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
- It is a single measure that applies to all types of losses and aggregates.
- The requirement of a probability implies that the losses are normal.
- VaR omits the severity of events that surpass the confidence level.

# Calculating Value at Risk - I

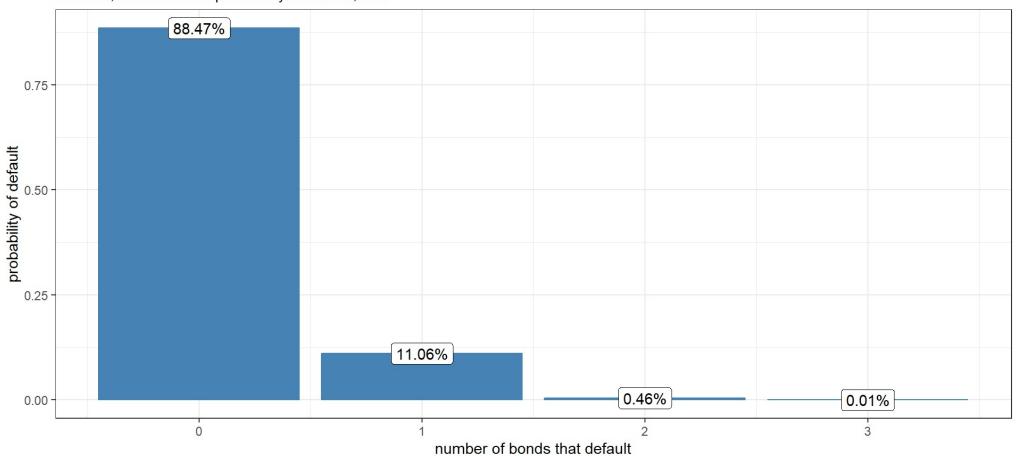
- Historical observations:
  - Easy
  - Realistic, if enough observations are available
- Historical observations with resampling:
  - Easy
  - Realistic, if level of confidence is realistic itself
  - Does not go beyond observed values

## Calculating Value at Risk - II

- Fitted distributions and simulation:
  - More complicated, possible model error.
  - Allows for a tail beyond the observed.
  - Not necessarily better than the previous, within the normal range of outcomes.

#### **Criticism of VaR**

- VaR does not tell us the severity of events beyond the confidence level.
- Two portfolios with the same VaR may have different tail distributions.
- VaR does not necessarily recognize diversification benefits.
- "Perverse incentives", "discourage diversification" and so on.
- Response: Tail Value at Risk (TailVaR)


## **Example VaR Diversification I**

- You have a portfolio of three 100€ bonds, each with a 4% probability of default, independent from each other.
- Each bond follows a Bernoulli distribution, so the random variable X nr. of bonds that default follows a Binomial.
- Inspection of its probability mass function leads to one conclusion:

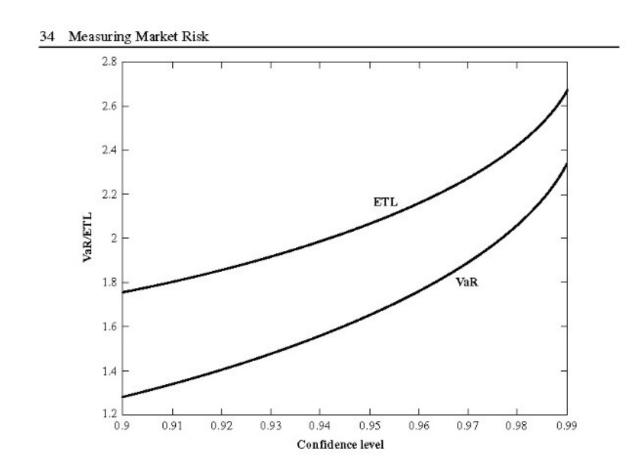
95% VaR tells us that it is less risky to invest all in only 1 bond!

# **Example VaR Diversification II**

Probability Mass Function for the R.V. 'Nr. of bonds that default' 3 bonds, each with 4% probability of default, i.i.d.



#### **Expected Tail Loss - TailVaR**


ullet For a loss distribution F, TailVaR at confidence level lpha is defined as

$$ext{TailVaR}_{lpha}(F) = rac{1}{1-lpha} \int_{lpha}^{1} ext{VaR}_{s}(F) ds$$

• TailVaR is the average of VaR above the confidence level  $\alpha$ .

#### VaR and TailVaR Illustration

TailVaR compared with VaR vs. confidence level (Normal dist.)



#### TailVaR - Observations

- TailVaR measures the entire tail beyond the VaR percentile.
- TailVaR is indifferent to the size of losses that exceed VaR.
- TailVaR is not the only alternative to VaR.
- Its choice of confidence level and holding period is also arbitrary.
- Quantifying extreme tail losses and their probability is difficult.

#### Coherent risk measures

- ullet A risk measure ho is a functional of a loss distribution F, or alternatively a loss random variable  $X\sim F.$
- The risk measure is coherent if it satisfies:
  - $lacksquare Monotonicity: X \geq Y \Rightarrow 
    ho(X) \geq 
    ho(Y)$
  - Subadditivity:  $\rho(X+Y) \leq \rho(X) + \rho(Y)$
  - lacksquare Positive homogeneity:  $\rho(aX)=a\rho(X)$  if a>0 is a constant
  - Tranlation invariance:  $\rho(X+a) = \rho(X) + a$  for a constant a.
- TailVaR is coherent, while VaR is not.

## Spectral risk measures I

- A spectral risk measure is defined as a weighted average of VaR at different levels.
- The weight increases with the severity of the loss:

$$ho(F) = \int_0^1 \psi(s) F^{-1}(s) ds = \int_0^1 \psi(s) Va R_s ds$$

where  $\psi(s) \geq 0$ ,  $\int_0^1 \psi(s) ds = 1$  and  $\psi(\cdot)$  is non decreasing (i.e. larger losses matter more).

## Spectral risk measures I

TailVaR is a spectral risk measure with

$$\psi(s) = rac{1}{1-lpha} I(s \geq lpha)$$

where *I* is a step function - **Homework!** 

- One can prove that spectral risk measures are coherent.
- Good video introduction https://ryanoconnellfinance.com/ product/expected-shortfall-value-at-risk-calculator-in-excel/

#### Solvency II and the 99.5% VaR

- The SCR and capital charges are based on 99.5% VaR. Why?
  - CEIOPS originally proposed 99% VaR as the basis of SCR.
  - The academic community objected that VaR was bad and that TailVaR should be used. They are right, of course.
  - CEIOPS put out a proposal to use 99% TailVaR.
  - The insurance industry and regulators objected that TailVaR was too complicated. They are right, of course.
  - As a compromise, CEIOPS suggested to use 99.5% VaR as a proxy for 99% TailVaR.